
Exam Symmetry in Physics

Date	April 11, 2014
Room	5419.0013
Time	14:00 - 17:00
Lecturer	D. Boer

- Write your name and student number on every separate sheet of paper
- You are not allowed to use the lecture notes, nor other notes or books
- All subquestions (a, b, etc) of the 3 exercises (18 in total) have equal weight
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

Exercise 1

Consider a regular five-sided pyramid with a regular pentagon as base (see figure) and its symmetry group C_{5v} .

(a) Identify all transformations that leave this regular five-sided pyramid invariant.

(b) Show that C_{5v} is isomorphic to D_5 , for instance using cycle notation.

(c) Argue, using geometrical arguments, that C_{5v} has four conjugacy classes.

(d) Determine the dimensions of all inequivalent irreps of C_{5v} .

(e) Construct explicitly the three-dimensional vector representation D^V for the two transformations that generate C_{5v} and extract a two-dimensional irrep from it.

(f) Construct the character table of C_{5v} . The irrep obtained in (e) may be used and it may be convenient to use $x \equiv \cos(2\pi/5) = -\frac{1}{4}(1-\sqrt{5})$ and $y \equiv \cos(4\pi/5) = -\frac{1}{4}(1+\sqrt{5})$, that satisfy $x^2 + y^2 = \frac{3}{4}$ and $xy = -\frac{1}{4}$.

(g) Decompose D^V of C_{5v} into irreps and use this to conclude whether this group allows in principle for an invariant three-dimensional vector, such as an electric dipole moment.

Exercise 2

Consider a non-isotropic medium with a conductivity tensor $\sigma_{ij} \neq \delta_{ij}$.

(a) Show using the transformation properties of the equation $j_i = \sigma_{ij} E_j$ that σ_{ij} transforms according to the direct product representation $D^V \otimes D^V$.

(b) Show that if σ_{ij} is (anti-)symmetric, then it remains (anti-)symmetric under orthogonal transformations.

(c) Show that σ_{ij} is invariant if it satisfies $\sigma D^V = D^V \sigma$.

(d) Assuming the medium has a C_3 symmetry, determine the most general invariant conductivity tensor.

(e) Explain why in the case of SO(3), in other words for an isotropic medium, the only invariant tensor is proportional to δ_{ij} .

(f) Explain why the trace of a symmetric tensor σ_{ij} transforms as a scalar.

Exercise 3

Consider the group of rotations in three dimensions SO(3).

(a) Specify the defining representation of SO(3).

(b) Write down the elements of the subgroup of rotations around the x-axis in the defining representation.

(c) Write down the corresponding matrices in a spherical basis.

(d) Specify the three complex irreps of SO(2) that appear in these matrices.

(e) Give an example of a physical system with an SO(3) symmetry and give an example of a system that is not SO(3) invariant itself but that has an SO(3) invariant potential.